Previsão de demandas em uma rede de postos de combustíveis, com auxílio de séries temporais, métodos causais e redes neurais artificiais

dc.contributor.advisorFreitas, Felipe Fonseca Tavares de
dc.contributor.advisorLatteshttp://lattes.cnpq.br/5523511253031983pt_BR
dc.contributor.referee1Nascimento, Polyana Santos Fonseca
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6889523334917369pt_BR
dc.contributor.referee2Silva Junior, Carlos Gilberto Vieira da
dc.contributor.referee2Latteshttp://lattes.cnpq.br/2738903947477853pt_BR
dc.creatorTeixeira, Rodrigo Simões
dc.creatorSiqueira, Sirius Raffael Jansen Costa
dc.date.accessioned2023-10-19T12:31:55Z
dc.date.available2023-10-19T12:31:55Z
dc.date.issued2018
dc.description.abstractThe object of this study is demonstrate with three quantity ways about ideas of demand, what is: time series, casual method and artificial neural system. And with this results, organize comparations about routine data and find the better method to be apply in a gas station. Based on an error measurement, where the one presenting the lowest is considered the best method. In order to achieve this, the objective of this study is to evaluate which of the mathematical methods can be more efficient in forecasting demand. In analyses will be use Excel®, Crystal Ball® and Matlab®. After all work, it is possible see artificial neural system with the best results, in second place we have time series and for last casual method. When we consider the week analyses, it's verified the best results, because of data control and outliers finish. In this form, it is correct consider the artificial neural with the best method when the subject is ideas of demand.pt_BR
dc.description.resumoO presente trabalho visa apresentar o estudo acerca de três métodos quantitativos existentes sobre previsão de demanda, que são as séries temporais, métodos causais e redes neurais artificiais. E a partir de seus resultados, realizar análises comparativas, tanto de dados diários, quanto semanais, com o intuito de se conhecer qual destes conseguem atingir melhor desempenho na previsão de demanda de uma rede de postos de combustíveis. Tendo como base em uma medição de erro, onde aquele que apresentar o menor será considerado o de melhor método. Para somente assim, atingir o objetivo deste estudo, que se baseia em avaliar qual dos métodos matemáticos consegue ser mais eficientes numa previsão de demanda. Para tal, serão aplicados nas ferramentas Excel®, Crystal Ball® e Matlab®. Os resultados alcançados mostraram que as redes neurais artificiais conseguiram obter melhor eficiência nas previsões, seguida pela média móvel dupla, das séries temporais, e por fim os métodos causais. As análises semanais obtiveram os melhores resultados, pelo fato de agruparem os dados e eliminarem boa parte dos outliers. Podendo assim concluir que as redes neurais artificiais conseguem ter melhor desempenho para realizar uma previsão de demandas.pt_BR
dc.identifier.citationTEIXEIRA, Rodrigo Simões; SIQUEIRA, Sirius Raffael Jansen Costa. Previsão de demandas em uma rede de postos de combustíveis, com auxílio de séries temporais, métodos causais e redes neurais artificiais. 2018. Trabalho de Conclusão de Curso (Bacharelado em Engenharia de Produção) – Centro Universitário do Estado do Pará, Belém, 2018.pt_BR
dc.identifier.urihttps://repositorio.cesupa.br/handle/prefix/245
dc.languageporpt_BR
dc.publisherCentro Universitário do Estado do Parápt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.graduation-courseBacharelado em Engenharia de Produçãopt_BR
dc.publisher.initialsCESUPApt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectRedes neurais (Computação)pt_BR
dc.subjectRedes neurais artificiaispt_BR
dc.subjectAnálise de séries temporaispt_BR
dc.subjectPrevisão econômicapt_BR
dc.subjectMATLAB (Programa de computador)pt_BR
dc.subjectExcel (Programa de computador)pt_BR
dc.subject.cnpqENGENHARIASpt_BR
dc.titlePrevisão de demandas em uma rede de postos de combustíveis, com auxílio de séries temporais, métodos causais e redes neurais artificiaispt_BR
dc.typeTrabalho de Conclusão de Cursopt_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
TC - Rodrigo Simoes Teixeira, Sirius Raffael Jansen Costa Siqueira.pdf
Tamanho:
2.51 MB
Formato:
Adobe Portable Document Format
Descrição: